
Impact on the fuzzy modeling in operation  

of electric distribution systems  
 

GHEORGHE GRIGORAS, GHEORGHE CARTINA 

Department of Power Systems 

Technical University “Gheorghe Asachi” of Iasi 

Bd. D. Mangeron, No. 51 - 53  

ROMANIA 

ggrigor@ee.tuiasi.ro, gcartina@ee.tuiasi.ro 
 

 

Abstract: - Estimation of the load, particularly of the peak load, is basis for the system state estimation, and 

for technical, and economic calculations. This makes possible improvement in economic operation, 

maintenance of electrical equipment, and optimal planning and operating of electrical distribution systems. In 

the paper, starting from a fuzzy correlation model of the loads, a power flow analysis from an electric 

distribution system with the 20 kV voltage level is presented. The results showed that using a fuzzy correlation 

model for the loads from the 20 kV nodes puts a new quality into the electric distribution system analysis in 

uncertain conditions. 
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1 Introduction 
Information plays a very important role in electric 

distribution systems. Thus, estimation of the loads 

represents basis for the system state estimation for 

technical and economic calculations, [1]–[5]. 

The limited sources and the growing request of 

electric energy, together with the impact of power 

generation, transportation, distribution and usage on 

the environment and the eco-system, motivates the 

research on techniques to optimize the energy 

utilization in cyber-physical energy systems, [6], 

[7]. Cyber-physical systems (CPS) represent an 

emerging technology that aims to integrate 

embedded processing devices to monitor and control 

physical processes, [6]–[10]. Cyber-Physical Energy 

Systems (CPES) are a dedicated case of CPS 

dealing with electric power systems. In Cyber-

Physical Energy Systems, the “physical” process is 

made by a network of electric devices that are 

controlled by a complex set of interconnected 

embedded systems. In these systems, embedded 

computing is integrated within the electric power 

system to gather information about the most 

relevant parameters, such as voltage, current, 

phases, consumed energy and power, [6], [7]. 

Acquired data are then combined and processed to 

generate suitable control commands to achieve the 

desired application goal. Typical goal is the 

estimation of the state corresponding to the electric 

power system.  

But the problem of generating a coherent 

information set is critical in electric distribution 

systems, because, except the usual measurements 

from substations, there are few information about 

the state of network, [1]. The continuous 

measurement of the loading of network elements is 

only carried out in particular places. In the 

remaining part of the network load conditions are 

only measured infrequently. With load modeling 

based on power system elements it is possible to get 

detailed information of the development of the loads 

on elements such as transformers, lines, cable links 

and this is used to support the planning and 

operation of distribution systems, [11]-[13]. As a 

result, there is at any moment a generalized 

uncertainty about the power demand conditions and 

therefore about the network loading, voltage level 

and power losses. The effects of the load 

uncertainties will propagate to calculation results, 

affecting the state estimation and the optimal 

solutions of the various problems concerning the 

operation control and development planning, [1]. 

 The complexity of the problem increased with 

the size of the electric distribution system. In this 

situation, different technologies such as fuzzy logic, 

neural networks, and expert systems have been 

developed to manage the large amount of data 

available and to best utilize the information 

provided in the data. One of immediate challenges is 

what type of technology is suitable for us to 

appropriately process the information to improve 

our applications, [1]–[3], [5], [11], [20], [21].  

In this paper, starting from a fuzzy correlation 

model for the loads from 20 kV nodes of the electric 
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distribution system, a power flow analysis is made. 

The obtained results are compared with values from 

real case. The analysis revealed that the use of these 

fuzzy models leads to satisfactory results regarding 

to the state estimation of the electric distribution 

system at the peak load. 
 

 

2 Aspects about Fuzzy Modeling 
The notion of modeling is essential to modern 

techniques of process control. Developing a control 

process in fact means developing a model that 

allows one to predict the action and reduce the 

amount of feedback required. An important point 

that needs to be made is that the model does not 

represent reality, but is a projection of it in a 

simplified space, whose dimensions were chosen 

depending on the problem to be solved. The model 

cannot be good or bad as such, but only adapted or 

not to the prediction requirements of the process. 

Modeling can be performed in numerous ways. 

Not long ago, modeling meant systems of 

differential equations, transfer functions, and so on. 

The introduction of computers was perceived as a 

powerful means of computation and of pushing the 

limits of model complexity and process control. 

Since its first presentation in 1965 by L. A. 

Zadeh, the Fuzzy Techniques (FT) had an 

unexpected growth and success. The broad 

development of mathematical theory especially in 

areas of Fuzzy Control, Neural Networks, and 

Pattern Recognition provided the basis for different 

applications. They finally became the driving force 

of Fuzzy Techniques that today is reflected in many 

different software and hardware products, [26]. 

The basic idea of FT is to model and to be able to 

calculate with uncertainty. Mathematical models 

and algorithms in electric power system theory aim 

to be as close to reality as possible. The required 

human observations, descriptions, and abstractions 

during the modeling process are always a source of 

imprecision. A way to classify this imprecision is 

depicted in Fig. 1, [26]. 

While the two sources of imprecision have long 

since led to suitable mathematical models, the last 

one came in our mind only a few decades ago, 

although we use it instinctively in our everyday life 

the linguistic descriptions such as Small, Medium, 

High [5], [11], [26]. These vague descriptions are as 

well part of modeling process and the algorithm.  

Uncertainty in fuzzy logic is a measure of 

nonspecifically that is characterized by possibility 

distributions. This is, somewhat similar to the use of 

probability distributions, which characterize 

uncertainty in probability theory. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Mathematical models for imprecision 

 

 Linguistic terms used in our daily conversation 

can be easily captured by fuzzy sets for computer 

implementations. A fuzzy set is a set containing 

elements that have varying degrees of membership 

in the set. Even though the choices of membership 

function are subjective, there are some rules for 

membership function selection that can produce 

good results. The membership values of each 

function are normalized between 0 and 1.  

 There are different ways to derive membership 

functions. Subjective judgment, intuition and expert 

knowledge are commonly used in constructing 

membership function. Even though the choices of 

membership function are subjective, there are some 

rules for membership function selection that can 

produce well the results. The membership values of 

each function are normalized between 0 and 1. 

 The uncertain of the load level, reliability indices 

and the length of the feeders and so on can be 

represented as fuzzy numbers, with membership 

functions over the real domain ℜ. A fuzzy number 
can have different forms: linear, piecewise-linear, 

hyperbolic, triangular, trapezoidal or gaussian, Figs. 

2 – 7. Generally, the fuzzy numbers are represented 

as trapezoidal or triangular fuzzy number.  
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 In the case of triangular and trapezoidal 

representations, a fuzzy number A
~
 is usually 

represented by its breaking points, Fig. 5, Fig. 6: 
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3 Fuzzy Modeling of the Nodal Loads 

Using Correlation Theory 
The knowledge of loads at system buses is one of 

the most important requirements, for efficient 

operation of power systems. Estimation of the load, 

particularly of peak loads, allows improvement in 

operation and maintenance of electrical equipment 

and in planning of network operating configuration, 

[1], [12]. The main difficulties in modeling of peak 

loads at receiving buses in distribution systems 

result from the random nature of loads, 

diversification of load shapes on different parts of 

the systems, the deficiency of measured data and the 

fragmentary and uncertain character of information 

on loads and customers, [3]-[5]. 

The basic constraints of the general model are: 

• It must represent flows at given time, compatible 
with the Kirchhoff laws. 

• It must present coherency between estimated 
loads and measurements.  

• The load allocation must be independent of the 
network topology under operation. 

The last point is important: it would be 

unacceptable, from an operator point of view that 

the established load for a given node would 

“magically” chance, if he performed some switching 

or load transfer simulation. 

Many factor such loads and voltages at system 

buses, energy consumption, and parameters of 

equivalent circuits are included in power 

distribution calculations. These data is loaded with 

different errors arising from the inaccuracy of 

measuring instruments and deficiency of 

measurements, [3]-[5], [13]. The theory, which 
enables efficient description on unreliable and 

inaccurate data, and relationship between them, is 

fuzzy set theory. This theory was introduced to 

various engineering problems in which uncertainties 

were represented as intrinsic ambiguities. In this 

paper, the fuzzy numbers associated to a trapezoidal 

membership function, Fig. 8, are used to represent a 

vague knowledge about the load behavior, [2]-[5]. 

x  

x 4  

1 
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Fig. 8. Trapezoidal fuzzy load 

 

This kind of models can be used to represent the 

uncertain knowledge about load behavior either for 

active and reactive powers. 

Thus, if for some substations there are sufficient 

database, for a good forecasting of the load, for the 

other substations of the power system, the 

forecasting of the load can be make using the 

correlation study. Fig. 9 presents an uncorrelated 

fuzzy load characterized by its active and reactive 

membership functions expressed by trapezoidal 

fuzzy numbers, [2].  
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 Fig. 9. Uncorrelated P, Q fuzzy loads 
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This representation allows concluding that, 

assuming such a model, all possible combinations of 

active and reactive powers values are possible. 

Therefore, this model will certainly be far from 

reality and another can be used, Fig. 10.  
 

 

1 

Q[ kVAr] 

P 
[kW] µ Q 

1 

µ P 
 

Fig. 10. Correlated P, Q fuzzy loads 

 

Based on the correlation theory, the fuzzy models 

of the loads can be obtained using the algorithm 

presented below. The starting point of the algorithm 

is statistical analysis of the active and reactive 

curves of the substations and utilization of a linear 

regression model. This can be made for different 

time windows (window 24h, window 7h etc). The 

window 24h can be used successfully to estimate the 

hourly load on any substation. The other time 

windows 7h can be used in the peak load estimation 

of the substations, using the maximum value of the 

active power recorded in a reference substation. 

The steps of the algorithm [11], [13]: 

• Select of a reference for the correlation study. 
The reference is chosen the active power curve 

of the main injection point (usually the 

connecting power station to a higher voltage 

level grid); 

• Calculation of the kPrPi and kP: 

r

i

irir

P

P

PPPPk
σ

σ
ρ ⋅= ;                        (3)  

hrjPPij

h

j

P LPkPk
ir

/)(
1

⋅−=∑
=

       (4) 

where:  

     Pr  - the reference active power;  

     Pi  – the active power on the i substation (i = 1, 2, 

…, n, n is total number of the 20 kV substations 

from the analysis system);  

     ρPrPi – the correlation coefficient between the 

active powers of the substation i and reference r;  

      σPi, σPi – the standard deviations for Pi(t), Pr(t);  

     Lh – analysis window dimension (24, 7, etc); 

     h – hours number of the analysis windows.  

• Determination the active powers of substations at 
the peak load hour of the system with the linear 

regression model: 

PrPPi kPkP
ir

+⋅=                      (5)                                                             

• Determination the fuzzy models for active 
powers of substations at the peak load hour. 

Thus, for the maximum values of the reference, a 

fuzzy trapezoidal model can be chosen, Fig. 8.  

 If the type reactive power curves from the 20 kV 

distribution substations are known, for 

determination of the relationship between the active 

and reactive powers, same algorithm is used.  

 In this situation, the reference for the correlation 

study is same, so the reactive powers could be 

determined: 

 QrQPi kPkQ
ir

+⋅=                   (6) 

where coefficients kPrQi and kQ are same purport with 

the coefficients kPrPi and kP. 

 In contrary case, for estimation of the fuzzy 

reactive powers from the distribution substations the 

following fuzzy variables are used: the fuzzy active 

powers determined with the fuzzy model above 

described and power factor cosϕ, considered as 
fuzzy variable with the trapezoidal membership 

function having the following breaking points: 

x1=0.85; x2=0.88; x3=0.92; x4=0.95. 

 The fuzzy model used for the cosϕ corresponds 
to urban residential loads. Also, fuzzy variables P 

and cosϕ must be correlated as it is shown in Fig. 
11. 

Fig. 11. Correlation between fuzzy variables P and cosϕ 

 

Finally, reactive powers result from relation: 

ϕtan⋅= PQ                      (7)
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Fig. 12. The 20 kV test electric distribution system 

 

 

4 Study Case 
A study case based on a 20 kV test electric 

distribution system (34 substations) is used to 

illustrate fuzzy power flow models, Fig. 12. The 

distribution substations are equipped with one 

transformer with the nominal power by 400 kVA, 

630 kVA and 1000 kVA. The results of study are 

obtained for the loading system at the peak load. 

 

 

4.1 Estimation of the nodal loads 
The starting point for the proposed method based on 

fuzzy modeling of the nodal load is statistical 

analysis of the active and reactive power curves.  

For example, in the Figs. 13 – 16, four analysis 

windows for variation of active powers from the 

substation no. 28 are represented: window 24h, 

window 7h (tPL ± 3h), 7h (tPL-3h; tPL+3h),  7h (tPL-

4h; tPL+2h) and 7h (tPL-5h; tPL+1h) (where tPL 

represents the hour when it registered the system 

peak load). 

In the Table 1, the estimated values of the active 

powers from the all electric substations, at the peak 

load, for the different time windows are presented. 

For a better interpretation of the results, the 

estimation errors are shown in the Fig. 17. The 

lowest estimation errors were obtained for the time 

window 7h (tPL-5; tPL+1).  
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Fig. 13. The variation P28 (Pr), window 24 h 

 

 

P28(Pr) = 0,054⋅ Pr - 150  
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Fig. 14. The variation P28(Pr), window 7h  

(tPL–3h; tPL+3h) 
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P28(Pr) = 0,061⋅ Pr - 250  
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Fig.15. The variation P28(Pr), window 7h  

(tPL–4h; tPL+2h) 

 

P28(Pr) = 0,06⋅ Pr - 240  
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Fig.16. The variation P28(Pr), window 7h 

 (tPL–5h; tPL+1h) 

Table 1. The obtained results with the statistical model at the peak load hour of the distribution system 

Window 24h 
Window 7h 

(tPL -3; tPL+3) 

Window  7h 

(tPL-5; tPL+1) DS 

 

Pm 

[kW] 

 
Pe 

[kW] 

ErrP 
[%] 

Pe 
[kW] 

ErrP 
[%] 

Pe 
[kW] 

Errp 
[%] 

1 240.50 239.87 -0.25 242.91 1.00 239.18 -0.54 

2 216.30 224.75 3.90 221.72 2.50 214.72 -0.73 

3 311.10 346.66 11.43 325.90 4.75 315.86 1.53 

4 436.00 397.62 -8.80 448.77 2.92 430.60 -1.23 

5 410.70 381.80 -7.03 404.67 -1.46 422.27 2.81 

6 420.30 422.38 0.49 415.96 -1.03 407.03 -3.15 

7 600.60 614.11 2.24 597.28 -0.55 610.54 1.65 

8 617.70 609.06 -1.39 605.77 -1.93 622.15 0.72 

9 561.20 560.48 -0.12 553.07 -1.44 567.94 1.20 

10 208.70 213.18 2.15 211.44 1.31 200.76 -3.80 

11 617.00 607.32 -1.56 598.10 -3.06 626.26 1.50 

12 588.10 562.06 -4.42 593.15 0.86 586.35 -0.29 

13 404.90 408.13 0.79 378.81 -6.44 406.06 0.28 

14 357.20 397.83 11.37 362.83 1.57 359.61 0.67 

15 360.40 384.70 6.74 354.75 -1.56 363.06 0.73 

16 365.60 371.42 1.59 388.43 6.24 356.33 -2.53 

17 545.70 596.06 9.22 596.63 9.33 543.04 -0.48 

18 254.90 257.03 0.83 257.09 0.86 260.77 2.30 

19 191.30 213.61 11.66 202.63 5.92 191.78 0.25 

20 168.10 196.46 16.87 183.60 9.22 162.46 -3.35 

21 667.50 622.26 -6.77 618.86 -7.28 662.08 -0.81 

22 421.40 409.54 -2.81 414.28 -1.68 428.87 1.77 

23 440.40 388.90 -11.69 411.62 -6.53 436.36 -0.91 

24 637.00 642.21 0.81 633.43 -0.56 619.42 -2.75 

25 452.30 444.02 -1.82 459.63 1.62 448.10 -0.92 

26 623.70 534.84 -14.24 615.64 -1.29 616.91 -1.08 

27 402.20 392.49 -2.41 394.50 -1.91 408.35 1.53 

28 671.80 677.40 0.83 686.71 2.21 679.72 1.18 

29 634.10 643.68 1.51 640.00 0.93 628.87 -0.82 

30 594.20 569.71 -4.12 613.92 3.32 594.83 0.10 

31 388.10 437.63 12.76 386.38 -0.44 399.55 2.95 

32 329.80 341.49 3.54 332.31 0.76 330.87 0.32 

33 571.00 568.94 -0.36 563.85 -1.25 549.30 -3.80 

34 635.40 667.39 5.03 630.39 -0.78 655.06 3.09 
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The errors were calculated with the relation: 

(%)100⋅
−

=
im

imie

P

PP
Err            (8) 

where: 

Pmi – real value for active power from electric 

substation i;   

Pei – estimated values for active power from 

electric substation i. 

 But, because of the difficulties in the modeling 

of peak load from the electric distribution system, in 

the following fuzzy techniques are used.  

 The uncertain of the peak load was represented 

as fuzzy number with a trapezoidal membership 

function. The breaking points (x1, x2, x3 and x4) of 

the fuzzy trapezoidal numbers, corresponding to the 

active and reactive powers from substations at the 

peak load of analyzed electric distribution system, 

window 7h(tPL-5; tPL+1), are presented in Table 2. 
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Fig. 17. The estimation errors obtained with the statistical 

model for different time windows 
  

 

Table 2.  Breaking points for the fuzzy trapezoidal models, window 7h (tPL-5h; tPL+1h) 
 Active Power  Reactive Power 

DS 
x1 
[kW] 

x2 

[kW] 

  x3 

[kW] 

x3 

[kW] 

CrispP 
[kW] 

x1 
[kVAr] 

   x2 
[kVAr] 

x3 

[kVAr] 

x4 
[kVAr] 

CrispQ 
[kVAr] 

1 203.97 221.57 239.18 256.78 230.37 126.41 119.59 101.89 84.40 108.07 

2 181.20 197.96 214.72 231.47 206.34 112.30 106.85 91.47 76.08 96.68 

3 262.84 289.35 315.86 342.37 302.61 162.90 156.18 134.56 112.53 141.54 

4 331.89 381.24 430.60 479.95 405.92 205.69 205.78 183.44 157.75 188.16 

5 396.70 409.48 422.27 435.05 415.88 245.85 221.02 179.89 143.00 197.44 

6 364.66 385.85 407.03 428.22 396.44 226.00 208.26 173.40 140.75 187.10 

7 563.46 587.00 610.54 634.07 598.77 349.21 316.83 260.09 208.41 283.63 

8 553.52 587.83 622.15 656.46 604.99 343.04 317.28 265.03 215.77 285.28 

9 521.49 544.71 567.94 591.16 556.32 323.19 294.01 241.94 194.31 263.36 

10 162.19 181.47 200.76 220.05 191.12 100.52 97.95 85.53 72.33 89.08 

11 570.93 598.59 626.26 653.93 612.43 353.83 323.09 266.79 214.94 289.66 

12 532.85 559.60 586.35 613.10 572.98 330.23 302.04 249.79 201.52 270.90 

13 411.23 408.65 406.06 403.48 407.35 254.86 220.57 172.98 132.62 195.26 

14 316.62 338.11 359.61 381.10 348.86 196.23 182.50 153.19 125.26 164.30 

15 334.89 348.97 363.06 377.14 356.01 207.55 188.36 154.66 123.96 168.63 

16 301.29 328.81 356.33 383.84 342.57 186.73 177.48 151.80 126.16 160.54 

17 439.03 491.04 543.04 595.04 517.04 272.09 265.04 231.34 195.58 241.01 

18 216.96 238.86 260.77 282.67 249.82 134.46 128.93 111.09 92.91 116.85 

19 169.93 180.85 191.78 202.70 186.32 105.32 97.62 81.70 66.63 87.82 

20 145.98 154.22 162.46 170.70 158.34 90.47 83.24 69.21 56.11 74.76 

21 626.18 644.13 662.08 680.03 653.11 388.08 347.67 282.05 223.52 310.33 

22 419.03 423.95 428.87 433.79 426.41 259.69 228.83 182.70 142.58 203.45 

23 390.01 413.19 436.36 459.54 424.77 241.71 223.02 185.89 151.04 200.42 

24 549.63 584.52 619.42 654.31 601.97 340.63 315.50 263.87 215.06 283.77 

25 395.52 421.81 448.10 474.39 434.96 245.13 227.67 190.89 155.92 204.90 

26 544.85 580.88 616.91 652.94 598.90 337.67 313.53 262.81 214.61 282.16 

27 401.53 404.94 408.35 411.76 406.65 248.85 218.57 173.96 135.34 194.18 

28 587.35 633.54 679.72 725.91 656.63 364.01 341.95 289.56 238.60 308.53 

29 590.84 609.85 628.87 647.89 619.36 366.17 329.17 267.90 212.95 294.05 

30 518.79 556.81 594.83 632.85 575.82 321.52 300.54 253.40 208.01 270.87 

31 391.53 395.54 399.55 403.56 397.55 242.65 213.49 170.21 132.64 189.75 

32 306.86 318.86 330.87 342.87 324.87 190.18 172.11 140.95 112.70 153.98 

33 480.38 514.84 549.30 583.75 532.07 297.72 277.88 234.00 191.87 250.37 

34 626.36 640.71 655.06 669.41 647.89 388.19 345.82 279.06 220.03 308.27 
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 The values for active powers were obtained 

using the correlation/linear regression model (5), for 

which the fuzzy model of the reference has the 

following values of the breaking points: x1=0.9⋅Pr; 

x2=0.95⋅Pr; x3 = Pr and x4 = 1.05⋅Pr. The results for 

the reactive powers were obtained using model (6), 

using same reference.  

 The crisp values (CrispP and CrispQ) from the 

Table 2 represent values obtained from 

defuzzification process using the centroid method.  

 The estimation errors for the active powers from 

electric distribution substations are shown in the 

Fig. 18. 

 

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Noi. substation

E
rr
o
r 
(%
)

 

Fig. 18. The estimation errors for active powers obtained 

with the fuzzy model  

 

 The numerical data show that the fuzzy 

correlation model can be used with very good 

results for determination of the peak load of 

different distribution substations. 

 

 

4.2 Power flow analysis using fuzzy 

correlation loads  
 Using the results obtained in the above 

paragraph, a fuzzy power flow analysis is made. 

Thus, the calculations must be carried out in every 

break-point of fuzzy numbers corresponding to 

nodal loads.  

Therefore, all state variables (node voltages, 

power flow, power losses and so on) will be 

calculated as fuzzy numbers. The results of study 

are obtained for the loading network at the peak 

load.   

 The signification of the calculated variables that 

described network state at the peak load is: 

• Ps, Qs – active and reactive power injected by the 

bulk system; 
• ∆PL, ∆QL – total active and reactive losses of the 

lines; 

• ∆PTr, ∆QTr – total active and reactive losses of 

the transformers; 

• ∆PT, ∆QT – total active and reactive losses of the 

distribution system; 

• QCL - total reactive power of the lines. 

In the Table 3 the most important steady state 

variables are presented. The crisp values of these 

variables are compared with the real values, and the 

conclusion is that the proposed method leads to 

encouraging results. 

 From the Figs. 19 – 20 it can observe that after 

steady state calculations, the membership functions 

for power losses are approximately triangular (x3 is 

very close x4).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 19. Membership function of the total active losses  

Table 3. State variables obtained using fuzzy model with correlated loads  
State 

quantities 
x1 x2 x3 x4 Crisp Real Case 

Err 

[%] 

 Ps         [kW] 14081.67 14856.06 15397.45 16397.45 15183.16 15550.04 -2.36 

 Qs      [kVAr] 9321.84 8562.00 7324.74 6102.63   7827.80 8004.18 -2.20 

 ∆PL   [kW] 86.50 89.30 89.60 91.80 89.30 90.08 -0.87 

 ∆PTr  [kW] 186.30 190.50 191.10 194.80 190.68 193.10 -1.25 

 ∆PT    [kW] 272.78 279.76 280.70 286.65 279.97 284.19 -4.83 

∆QL   [kVAr] 57.70 59.60 59.80 61.30 59.60 63.40 -5.99 

∆QTr  [kVAr] 1208.60 1228.00 1231.40 1249.10    1229.28 1269.68 -3.18 

∆QT    [kVAr] 1266.30 1287.60 1291.20 1310.40 1288.88 1333.08 -3.32 

QCL     [kVAr] 502.28 502.25 502.23 502.21 502.24   502.18 0.01 

µ(∆PT) 

1.0 

0.8 

0.6 

0.4 

0.2 

0 
290 285 280 275 270 265260 

∆PT 
[kW] 

correlated 

loads 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Gheorghe Grigoras, Gheorghe Cartina

E-ISSN: 2224-266X 112 Issue 4, Volume 11, April 2012



 

 

 

 

 

 

 

 

 

 

 

 
Fig. 20. Membership function of the total reactive losses  

 

 

5 Conclusions 
Starting from the statistical analysis, a method based 

on the fuzzy modeling of active and reactive powers 

from the substations corresponding to an electric 

distribution system is proposed. The numerical 

results show that the fuzzy correlation models can 

be used with very good results for determination of 

the peak load corresponding distribution substations, 

and further with the state estimation of the system. 

Generally, if the time window is less and 

correlated with the overall loads then, the obtained 

results are better.  

 Combination of the fuzzy approach with the 

expert systems leads to an efficient and robust tools. 
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